International Muon Collider Collaboration Status and Plans

with a personal view

Nadia Pastrone (INFN

Muon Collider Physics and Detector workshop

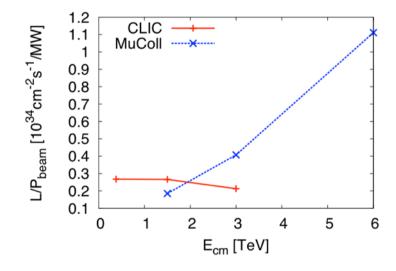
FNAL – December 15, 2022

Essentials

- ✓ the international community is working together and growing since 2018 5 years mainly based on previous U.S. MAP project results, MICE in UK and alternative studies in Italy with crucial contribution to demonstrate the physics potential and the measurements' feasibility
- ✓ an international collaboration was established soon after the ESPPU recommendation, in July 2020
- ✓ Accelerator R&D Roadmap and Snowmass21, carried on in parallel, strengthen the community
- → IMCC has the responsibility to steadily evolve into the most inclusive environment to deliver a multi-TeV muon collider design study, exploiting at best the international resources and synergies, to establish by the next strategies whether the investment into a full CDR and a demonstrator is scientifically justified to be chosen as the future feasible and viable option
- ✓ a **baseline scheme to design the 10 TeV facility is sketched out** and requires several further studies, setting the right priorities and R&D plans, engaging all the present and future participating institutes

multi-TeV Muon Collider

Input Document to EU Strategy Update – Dec 2018


European Strategy Update – June 19, 2020:

"Muon Colliders," <u>arXiv:1901.06150</u> by CERN-WG on Muon Colliders

High-priority future initiatives [..]

In addition to the high field magnets the **accelerator R&D roadmap** could contain:

[..] an **international design study** for a **muon collider**, as it represents a **unique opportunity** to achieve a *multi-TeV energy domain beyond the reach of* e^+e^- *colliders*, and potentially within a *more compact circular tunnel* than for a hadron collider. The biggest challenge remains to produce an intense beam of cooled muons, but *novel ideas are being explored*.

A dream machine to probe unprecedented energy scales and many different directions at once!

Direct searches

Pair production, Resonances, VBF, Dark Matter, ...

High-rate measurements

Single Higgs, self coupling, rare and exotic Higgs decays, top quarks, ...

High-energy probes

Di-boson, di-fermion, tri-boson, EFT, compositeness, ...

Muon physics

Lepton Flavor Universality, b → sμμ, muon g-2, ...

nature physics

Muon colliders to expand frontiers of particle physics

\sqrt{S}	$\int \mathcal{L}dt$
3 TeV	$1 {\rm ab}^{-1}$
10 TeV	$10 {\rm ab}^{-1}$
14 TeV	$20 {\rm \ ab^{-1}}$

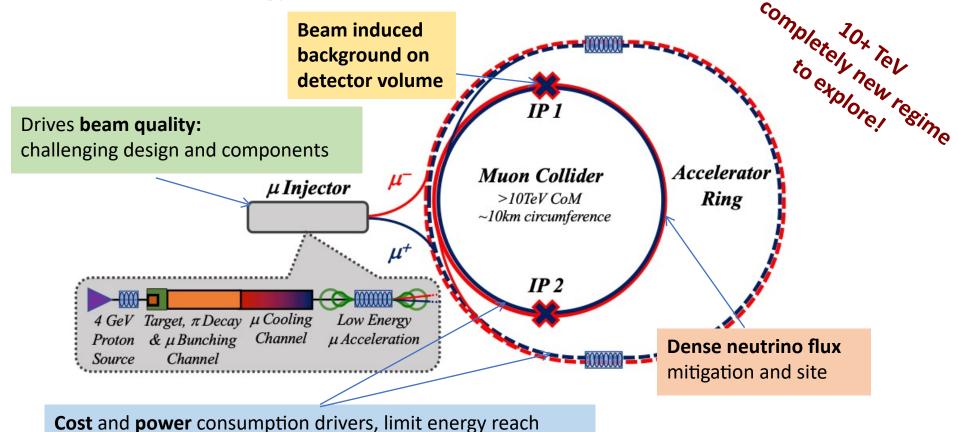
International Context

Laboratory Directors' Group (LDG) initiated a muon collider collaboration July 2, 2020

Project Leader: Daniel Schulte

- CERN Medium Term Plan 2021-2025 dedicated budget line ~2MCHF/year mainly to cover machine up to MDI activities
- International Design Study based at CERN → MoC signed by Funding Agencies and several Institutes the project encompasses physics, machine, detector and Machine Detector Interface
- European LDG Accelerator R&D Roadmap → implementation after Council Dec 2021 dedicated Muon Beams Panel but also synergies in High field magnets, RF and ERL
- European ECFA **Detector R&D Roadmap** → **implementation after Council Dec 2021**Muon collider @ 10 TeV is one of the targeted facilities emerging from the EPPSU
- US Snowmass'21 Muon Collider Forum since 2021 Muon Collider Forum Report Sept 2022
- Snowmass/P5 process in the US → ready by Fall 2023
- HORIZON-INFRA-2022-DEV-01-01 EU project MuCol under reevaluation after approval July 2022

 Research infrastructure concept development for design study → supported by TIARA


Collaboration Meeting of the Muon Collider Study @ CERN October 11-14, 2022 https://indico.cern.ch/event/1175126/

International Design Study facility

Proton driver production as baseline

- Focus on two energy ranges:
- **3 TeV** technology ready for construction in 10-20 years
- **10+ TeV** with more advanced technology

e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring

Key Challenge Areas

- Physics potential evaluation, including detector concept and technologies to design experiments
- Impact on the environment
 - Neutrino flux mitigation and its impact on the site (first concept exists)
 - Machine Induced Background impact the detector, and might limit physics
- High-energy systems after the cooling (acceleration, collision, ...)
 - Fast-ramping magnet systems
 - High-field magnets (in particular for 10+ TeV)
- High-quality muon beam production
 - Special RF and high peak power
 - Superconducting solenoids
 - Cooling string demonstration (cell engineering design, demonstrator design)
- Full accelerator chain
 - e.g. proton complex with H- source, compressor ring \rightarrow test of target material

High energy complex requires known components

→ synergies with other future colliders

Roadmap Plan

Site ν mitigation

MDI Collider ring Cooling **Proton complex Beam dynamics**

Lauci	Degin	Lilu	Description	Азрис	ationai	141111	IIIIai	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]	
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300	(
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0	'
			gation system					
MC.MDI	2021	2025	Machine-detector	15	0	15	0	
100000000			interface					3
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0	
MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0	
			plex					
MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0	
			100000000000000000000000000000000000000					

Scenarios

Aspira	itional	Min	imal
[FTEy]	[kCHF]	[FTEy]	[kCHF]
445.9	11875	193	2445

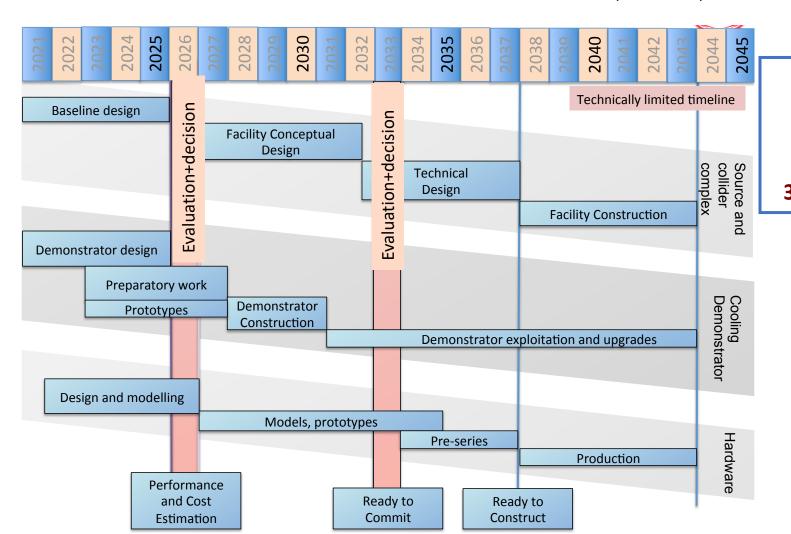
~70 Meu/5 years

Magnets: **HF** dipoles and solenoids **Fast ramping**

NCRF - SCRF **RF Test stand**

Cooling cell Demonstrator c

Target system Integration


	Label	Begin	End	Description	Aspirational Min		imal	
					[FTEy]	[kCHF]	[FTEy]	[kCHF]
ĺ	MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
	MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
				gation system				
	MC.MDI	2021	2025	Machine-detector	15	0	15	0
				interface				
	MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
	MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0
(plex				
	MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
	14G + GG P	2022	2026	tems	26	0	2.5	
	MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
	MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
	MC ACC ALT	2022	2025	across complex	11.7	0	0	0
	MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
	MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
	MC.HFM.SOL	2022	2025	High-field	76	2700	29	0
	WC.HFWI.SOL	2022	2020	solenoids	70	2700	29	U
	MC.FR	2021	2026	Fast-ramping mag-	27.5	1020	22.5	520
	WICH K	2021	2020	net system	27.5	1020	22.5	320
	MC.RF.HE	2021	2026	High Energy com-	10.6	0	7.6	0
		2021	2020	plex RF	10.0		,,,	
	MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
	MC.RF.TS	2024	2026	RF test stand + test	10	3300	0	0
				cavities				
	MC.MOD	2022	2026	Muon cooling test	17.7	400	4.9	100
				module				
	MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
				strator design				
	MC.TAR	2022	2026	Target system	60	1405	9	25
	MC.INT	2022	2026	Coordination and	13	1250	13	1250
				integration				
		A	2	Sum	445.9	11875	193	2445
	7-							

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

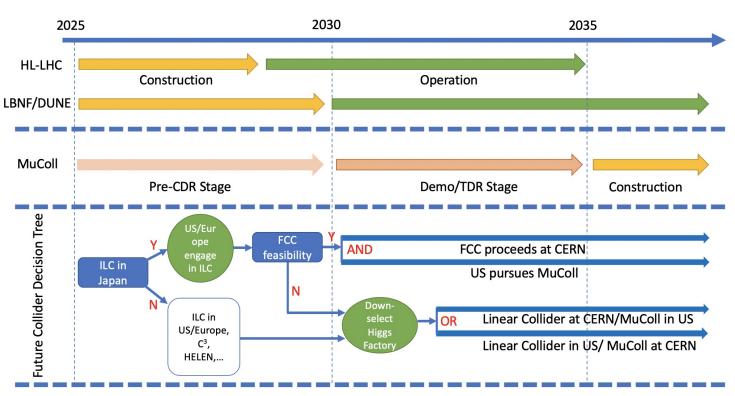
The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

https://arxiv.org/abs/2201.07895

Technically limited timeline

Long-term future: a multi-TeV collider

- For the next decade and beyond
 - o **2025-2030**:
 - Develop an initial design for a first stage TeV-scale Muon Collider in the US (pre-CDR)
 - Support critical detector R&D towards EF multi-TeV colliders
 - 2030-2035: Demonstrate principal risk mitigation and deliver CDR for a first-stage TeV-scale Muon
 Collider
 - After 2035:
 - Demonstrate readiness to construct and deliver TDR for a first-stage TeV-scale Muon Collider
 - Ramp up funding support for detector R&D for EF multi-TeV colliders



Muon Collider Forum Report

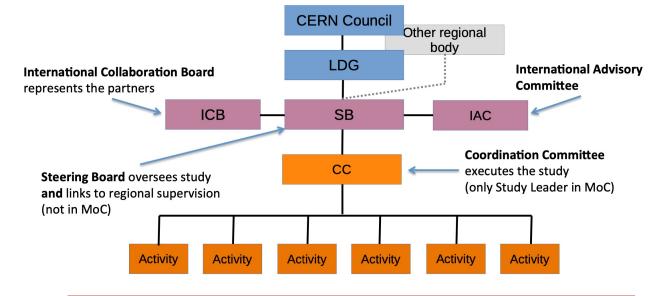
arXiv:2209.01318 [hep-ex]

Forum Conveners:

K.M. Black, S. Jindariani, D. Li, F. Maltoni, P. Meade, D. Stratakis

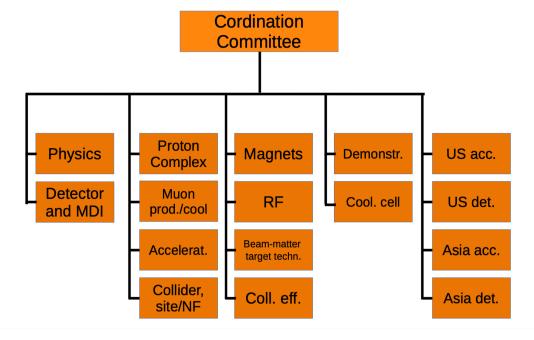
from Snowmass

IMCC organization for Roadmap implementation


After the MoC a Governance Structure of the International Muon Collider Collaboration document by D. Schulte, M. Lamont

→ implementation details including LDG/Council requests STILL TO BE REFINED AND IMPROVED

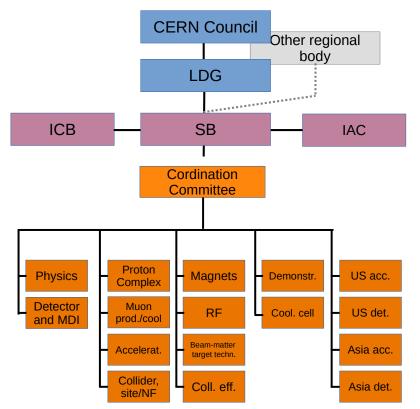
Proposed Governance



CERN is host organisation, can be transferred to other partner on request of CERN and with approval of ICB Will review governance in 2024, US could join at that time

MoC signed by CERN CEA INFN STFC-RAL ESS IHEP and different universities in EU, US, China

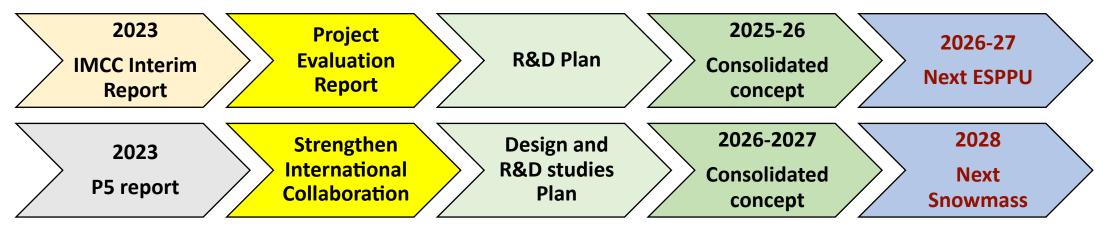
Coordination Committee


IMCC organization names

- **Collaboration Board (ICB)**
 - Elected chair: Nadia Pastrone
- Steering Board (SB)
 - Chair Steinar Stapnes, CERN members: Mike Lamont, Gianluigi Arduini,
 - + ICB representatives, ICB chair and SL and deputies
- **International Advisory Committee (IAC)** still to be formed

- Coordination committee (CC)
 - ICB endorsed:
 - Study Leader **Daniel Schulte**
 - Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

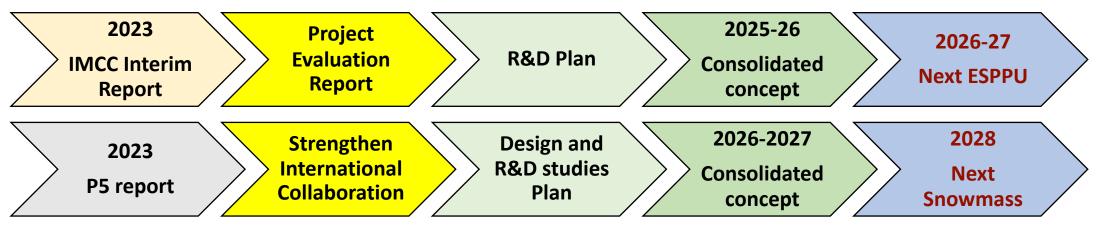
Physics	Andrea Wulzer
Detector and MDI	Donatella Lucchesi
Protons	Natalia Milas
Muon production and cooling	Chris Rogers
Muon acceleration	Antoine Chance
Collider	Christian Carli


Magnets	Luca Bottura
RF cavities	Alexej Grudiev, Claude Marchand
Beam-matter interaction target systems	Anton Lechner
Collective effects	Elias Metral

US (detector)	Sergo Jindariani
US (accelerator)	Mark Palmer
Asia (China)	Jingyu Tang
Asia (Japan)	tbd

Plans, timeline

Current funding level and available resources allows only to address the most critical items


→ more resources could be provided by R&D program both for detector and accelerator technologies at national, regional and international level

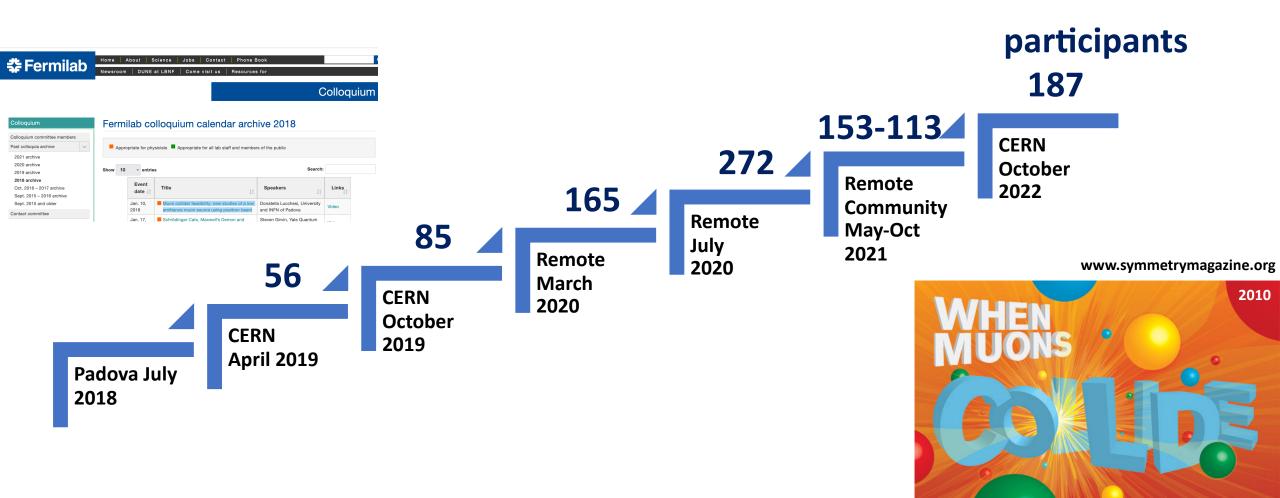
Crucial to:

- make convincing priorities
- explore and exploit synergies for technology R&D, test facilities physics/technology goals and application to other fields and society
- promote and take part to R&D programs in any continent
- share a common view and nurture an open and enthusiastic global community

.... and desiderata

- ✓ as the CERN WG during ESPPU, IMCC should steadily develop offering a common framework to the international community to work together
- ✓ IMCC organization and coordination structure should evolve in time and start to be adjusted as soon as the P5 process will be completed by Fall 2023

by the end of the next Strategy processes in ~2030, the IMCC should be truly "all-inclusive" region-wise with the US, Europe and Asia (Japan) as equal partners


http://map.fnal.gov/

A growing collaboration

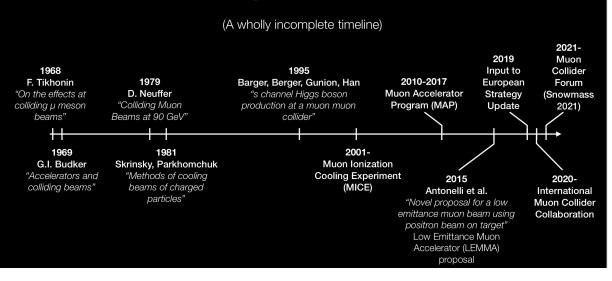
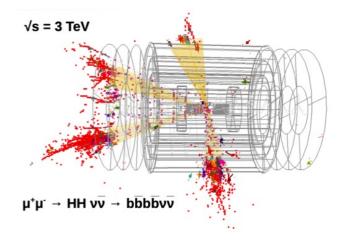


Illustration: Sandbox Studio

U.S. Muon Accelerator Program (MAP)

A brief history of muon colliders



- New key technologies are developing or available
 - → Time scale is becoming realistic for a multi-TeV collider
- New Physics opportunities
 - → Higher energy Higher luminosity
 - → Direct searches+precision reach physics program

Advances in detector and accelerator pair with the opportunities of the physics case

Looking forward to a bright future

Ready?

